Search results for "Categorical time series"
showing 2 items of 2 documents
Estimating finite mixtures of semi-Markov chains: an application to the segmentation of temporal sensory data
2019
Summary In food science, it is of great interest to obtain information about the temporal perception of aliments to create new products, to modify existing products or more generally to understand the mechanisms of perception. Temporal dominance of sensations is a technique to measure temporal perception which consists in choosing sequentially attributes describing a food product over tasting. This work introduces new statistical models based on finite mixtures of semi-Markov chains to describe data collected with the temporal dominance of sensations protocol, allowing different temporal perceptions for a same product within a population. The identifiability of the parameters of such mixtur…
Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R
2019
Sequence analysis is being more and more widely used for the analysis of social sequences and other multivariate categorical time series data. However, it is often complex to describe, visualize, and compare large sequence data, especially when there are multiple parallel sequences per subject. Hidden (latent) Markov models (HMMs) are able to detect underlying latent structures and they can be used in various longitudinal settings: to account for measurement error, to detect unobservable states, or to compress information across several types of observations. Extending to mixture hidden Markov models (MHMMs) allows clustering data into homogeneous subsets, with or without external covariate…